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1 Executive Summary

The overall objective of the Renewal of the Attentive Sensing project was to investigate effective allocation and/or
configuration of sensing resources in target detection, localization, classification, and tracking problems. In this exec-
utive summary, we briefly summarize the technical accomplishments in this project from January 1, 2003 to November
30, 2005. We also describe the personnel supported by this project, the publications resulting from the project, and
technical interactions arising from this project.

1.1 Technical Accomplishments

The technical work done in this project was organized into two broad areas. The first was attentive detection and local-
ization of a target using a configurable sensor (Task I In the proposal); this area dealt primarily with problems in which
the unknowns and sensor configuration variables were discrete. The primary thrust in Task 1 was extending previous
work to more complex detection of localization problems and developing theoretical bounds on the performance of

detectors. The second area was attentive estimation of the state of a dynamic system (Task 2 In the proposal); this
area involved unknowns and sensor configuration variables that were continuous. We investigated applications that
involve foveal sensors and pan-tilt-zoom cameras. We also investigated the development of configurable sensors for
simultaneous detection and tracking of targets. We briefly describe the progress in each of these two areas.

1.1.1 Detection and Localization of Targets

This work consisted of extending previous work on attentive detection using simple sensors to more complex detection
and localization problems. A significant effort was also devoted to the development of computationally tractable
bounds on the performance of optimal sensor configuration rules.

We have developed a heuristic configuration rule for a sensor that can be configured to interrogate a block of
adjacent cells. This heuristic is motivated by the divide-and-conquer approach that is successful in constrained twenty
questions problems. The heuristic uses greedy clustering to divide the grid into two approximately equiprobable
regions, and interrogates the region with the most probable cell; the clustering begins with the most probable cell. If
the same region is selected in two consecutive time epochs, the sensor interrogates only the most probable cell in the
second time epoch. The sensor configuration heuristic was evaluated using Monte Carlo simulations. The performance
of the multi-cell sensor is compared to the best-performing single-cell interrogation rule found to date. As expected,
the multi-cell sensor out performs the single-cell sensor for both criteria.

We also investigated the development of performance bounds for a single mode sensor. Actually finding bounds
requires significant computation, so the primary development effort was finding computational approaches that give
good bounds with acceptable complexity. The computation of these bounds usually includes (either directly or indi-
rectly) computation of sensor configuration rules; as the bound becomes tighter, the sensor configuration rule typically
approaches the optimal rule. It should be noted that any heuristic decision rule results in either a probability of error
or an expected number of sensor uses larger than the optimal; thus, evaluating the performance of heuristic decision
rules provides upper bounds on achievable performance. We investigated three basic types of bounds:

1. Application of variational methods to graphical models.

2. Approximation of cost-to-go (value) functions.

3. Decision tree traversal and pruning (e.g. branch and bound) methods.

To date, none of these approaches has resulted in satisfactory bounds.

1.1.2 Attentive Estimation of the State of a Stochastic System

We investigated attentive estimation of dynamical systems in the context of target tracking; this work used a foveal

sensor as well as pan-tilt-zoom cameras.
We used stochastic optimization to implement open-loop control strategies for the foveal sensor tracking a single

target. Since stochastic optimization is too computationally demanding for most applications, we also developed a
good, computationally feasible, myopic (greedy) heuristic using the optimal myopic strategy as a model. We applied



the optimal and heuristic control strategies in open-loop, open-loop feedback, and approximate closed-loop configu-
ration algorithms. We characterized the resulting tracker performance using Monte Carlo simulation; myopic control
rules (both stochastic optimization and the heuristic) gave better tracker performance than multi-step open-loop or
open-loop feedback controls. The best performance was obtained using myopic optimization or an approximate multi-
step closed-loop control.

In many scenarios, targets may be difficult to detect with a single use of a sensor due to target stealth, clutter, or
other factors. The use of a tracker that incorporates a target dynamics model and multiple uses of the sensor may allow
better target detection. Such as scheme, in which the estimator jointly tracks and make decisions about target presence
or absence, is denoted track before detect. We have investigated joint tracking and detection in the context of the foveal
sensor. We adapted the near optimal sensor configuration heuristic to the pixelated foveal sensor model implemented
with a particle filter that estimates both number of targets and the target states, and found that it did a good job of

tracking targets that had a reasonably high signal-to-noise ratio. We were less successful simultaneously tracking
and detecting dim targets; we believe that further development of the particle filter implementation may improve the
performance.

We also investigated heuristic strategies to configure a foveal sensor to track multiple targets moving in one di-
mension. These strategies were obtained by extending the heuristic strategy to multiple targets using three approaches:
simultaneously observe all targets, center the foveal region on each target in turn, and center the foveal region on the
target with the worst position estimate . Our simulation results showed the best performance is obtained by the last
rule.

We adapted the concepts develop for the foveal sensor configuration algorithms to the problem of configuring pan-

tilt-zoom cameras to track a target maneuvering in three dimensions. In particular, we developed an adaptive zoom
algorithm that minimizes localization errors by adaptively changing the focal length of the camera.

1.2 Personnel Supported

Personnel supported by this project include:

1. Darryl Morrell, PI

2. Fengjun Xi, Research Assistant

3. Himanshu Shah, Research Assistant

1.3 Publications

The following conference papers were written as a consequence of this work:

1. H. Shaw and D. Morrell, "A New Adaptive Zoom Algorithm for Tracking Targets Using Pan-Tilt-Zoom Cam-
eras," Conference Record of the 36th Asilomar Conference on Signals, Systems, and Computers, October 2005.

2. F. Xi and D. Morrell, "Tracking Multiple Closely Spaced Targets using an Adaptive Foveal Sensor," (invited
paper), Proceedings of ICASSP'05, March 2005, pp. v/941-v/944.

3. F. Xi and D. Morrell, "Target Tracking Using an Image Sensor with a Configurable Active Area," Conference
Record of the 36th Asilomar Conference on Signals, Systems, and Computers, November 2004, pp. 2111-2115.

4. H. Shah and D. Morrell, "An Adaptive Zoom Algorithm For Tracking Targets Using Pan-Tilt-Zoom Cameras,"

Proceedings of ICASSP'04, May 2004, Volume II, pp. 11-721-11-724.

5. Y. Xue and D. Morrell, "Target Tracking and Data Fusion using Multiple Adaptive Foveal Sensors," 6th Inter-
national Conference on Information Fusion, July 2003, pp. 326-333.

6. D. Morrell and W. Stirling, "An Extended Set-valued Kalman Filter," 3rd International Symposium on Imprecise
Probabilities and Their Applications, July 2003, pp. 396-407.

The following theses were supported by this grant:

1. Fengjun Xi, Sensor Configuration for Target Tracking, M. S., April 2005.

2. Himanshu Shah, An Adaptive Zoom Algorithm for Tracking Targets Using Pan-Tilt-Zoom Cameras, M. S.,
December 2003.
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1.4 Technical Interactions

The following research interactions were related to this project:

1. D. Morrell presented a talk on particle filters and the foveal sensor on February 21, 2003, to the Signal Processing
Lunch and Learn Seminar conducted at General Dynamics.

2. D. Morrell participated as an invited speaker in a panel discussion on sensor networks at the 22nd IEEE Inter-
national Performance, Computing, and Communications Conference on April 10, 2003.

3. D. Morrell was asked to organize and chair a special session at at the Asilomar Conference on Signals, Systems,
and Computers, November 2004.
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Figure 1: Target localization scenario. The space to be searched is divided into a rectangular grid. At each time epoch,
the sensor chooses a rectangular subset of the grid to interrogate.

2 Introduction

The technical work done in this project was organized into two broad areas. The first was attentive detection and local-
ization of a target using a configurable sensor (Task 1 In the proposal); this area dealt primarily with problems in which
the unknowns and sensor configuration variables were discrete. The primary thrust in Task 1 was extending previous
work to more complex detection of localization problems and developing theoretical bounds on the performance of

detectors. The second area was attentive estimation of the state of a dynamic system (Task 2 In the proposal); this
area involved unknowns and sensor configuration variables that were continuous. We investigated applications that
involve foveal sensors and pan-tilt-zoom cameras. We also investigated the development of configurable sensors for
simultaneous detection and tracking of targets. We briefly describe the progress in each of these two areas.

3 Task 1: Attentive Detection and Localization

Task 1 consisted of extending previous work on attentive detection using simple sensors to more complex detection and
localization problems. A significant effort was also devoted to the development of computationally tractable bounds
on the performance of optimal sensor configuration rules.

3.1 Detection and Localization of Targets

We considered the following abstract two-dimensional target localization problem. An area of interest is divided into

a grid containing N x N cells as shown in Figure 1. A stationary target is known to be located in one of the cells; tie
prior probability of the target being located in each cell is known.

At each time epoch, the sensor is configured, an observation is obtained, and this observation is used to update
the probability distribution of the target location using Bayes theorem. The sensor can select a rectangular group
of adjacent cells to interrogate. The result of the interrogation is a binary valued observation. If the target is in the
interrogated area, the target will be detected with a known probability of detection; if the target is not in the interrogated
area, a false alarm will be generated with a know probability.

Sensor configuration rules were investigated with respect to two optimality criteria:

1. Minimize the probability of error when the sensor is applied a fixed number of times (denoted MinPE).

2. Minimize the number of sensor uses needed to achieve a given probability of error (denoted MinUse).

For this sensor under the MinPE optimality criterion, the myopic optimal rule is to interrogate either the most probable
or second most probable cell. This rule does not take advantage of the sensor's multi-cell interrogation capability.
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Figure 2: Performance of the sensor configuration heuristic: (a) comparison of probability of error after 10 sensor uses
on a 3 x 3 grid for the myopic optimal rule and the heuristic. (b) comparison of expected number of sensor uses needed
to obtain a probability of correct decision of 0.95 on a 6 x 6 grid for the rule that interrogates the most probable cell
and the heuristic.

We have developed a heuristic configuration rule with better performance (over time) than the myopic optimal
rule. This heuristic is motivated by the divide-and-conquer approach that is successful in constrained twenty questions
problems. The heuristic uses greedy clustering to divide the grid into two approximately equiprobable regions, and
interrogates the region with the most probable cell; the clustering begins with the most probable cell. If the same
region is selected in two consecutive time epochs, the sensor interrogates only the most probable cell in the second
time epoch.

Computational evaluation of the sensor configuration heuristic for both optimality criteria is shown in Figure 2.
The performance of the multi-cell sensor is compared to the best-performing single-cell interrogation rule found to
date: the myopic optimal (for the MinPE criterion) or choosing the most probable cell (for the MinUse criterion). As
expected, the multi-cell sensor out performs the single-cell sensor for both criteria.

3.2 Configuration Performance Bounds

We investigated the development of performance bounds for the single mode sensor for both the MinPE and MinUse
optimality criteria. Actually finding bounds requires significant computation, so the primary development effort is
finding computational approaches that give good bounds with acceptable complexity. The computation of these bounds
usually includes (either directly or indirectly) computation of sensor configuration rules; as the bound becomes tighter,
the sensor configuration rule typically approaches the optimal rule. It should be noted that any heuristic decision rule
results in either a probability of error or an expected number of sensor uses larger than the optimal; thus, evaluating
the performance of heuristic decision rules provides upper bounds on achievable performance.

We have investigated three basic types of bounds:

1. Application of variational methods to graphical models.

2. Approximation of cost-to-go (value) functions.

3. Decision tree traversal and pruning (e.g. branch and bound) methods.

In the following, we briefly describe our work on each of these three approaches and outline their potential benefits
and drawbacks. To date, none of these approaches has resulted in satisfactory bounds for either optimality criterion.

In variational methods, complex graphical models are approximated with simpler models; variational parameters
are introduced to account for model approximations. The nature of the variational parameters determines whether
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upper or lower bounds will be computed. We investigated these methods briefly, but did not pursue them seriously;
our sensor configuration problems are sequential decision problems in which the current decision depends on all
previous decisions and observations, and these problems have very highly connected graphical models which do not
appear to lend themselves to variational analysis.

The approximation of cost-to-go functions (also known as value functions) has received significant attention from
researchers working on Partially Observed Markov Decision Processes (POMDP). In our case, the cost-to-go function
is the expected probability of error after completing the remaining observations expressed as a function of the current
posterior probability distribution, and applies only for the MinPE criterion. In the POMDP literature, several different
approximation approaches have been developed, typically with the goal of computing good control rules; the bounds
are obtained as a byproduct of this computation. Value functions for POMDP problems are piecewise linear and
convex; the complexity of their representation increases exponentially with the number of time steps ahead that the
sensor is scheduled. Interpolation of a value function provides a lower bound to the probability of error; elimination
of components of the piecewise linear representation can give upper bounds, but choosing which components to elim-
inate is a computationally difficult problem. We investigated several approximation approaches, including different
interpolation schemes and selection of interpolation points; in our work, we found that easily computable interpolation
functions give poor bounds.

Traversing the decision tree that represents possible sequences of sensor configurations can provide optimal con-
figuration rules; partial traversals, along with bounds associated with the un-traversed portions of the tree, can provide
both upper and lower bounds. The decision tree method is capable of computing bounds for both criteria. Practical
implementation of the tree traversal method requires good heuristics to guide the traversal. We have investigated the
AO* algorithm, which requires a lower bound estimate of the performance along a given (unsearched) branch of the
decision tree.

For problems in which the target characteristics do not change (e.g. localization and detection of a fixed target,
classification of a target), the posterior probability distribution is independent of the order in which observations
are obtained. Thus, the decision tree has many nodes that correspond to the same posterior probability; upper and
lower bounds for only one of these nodes must be evaluated to compute the overall upper and lower bounds. Thus,
the decision tree is equivalent to a graph structure with far fewer nodes, leading to a significant computational savings
when evaluating bounds. To date, our lower bounds on unsearched branches of the tree have not led to computationally
tractable bounds.

4 Task 2: Sensor Configuration for Tracking and Track Before Detect

Task 2 consisted of investigation of attentive estimation of dynamical systems in the context of target tracking; this
work used a foveal sensor as well as pan-tilt-zoom cameras. A foveal sensor has a central high-acuity (foveal) region
surrounded by a lower-acuity region; the foveal region can be steered and its width can be adjusted. We developed
an optimal myopic (i.e. greedy) sensor configuration process using stochastic approximation but found that it was
unsuited for real time implementation. However, a heuristic configuration rule derived from the characteristics of the
optimal ruled provided good performance. We extended this heuristic strategy to multiple targets and to track before
detect sensors.

To apply principles developed in the context of foveal sensors to more immediately practical sensors, we adapted

the heuristic configuration rules to pan-tilt-zoom cameras. Configuring pan and tilt corresponds to configuring the
foveal center; configuring zoom corresponds to setting the gain of the foveal region. Our investigation indicated that
the configuration heuristics improve the target tracking accuracy obtainable with a pan-tilt-zoom camera.

4.1 Optimal Rules for Foveal Sensors

We used stochastic optinfization to implement open-loop control strategies for the foveal sensor tracking a single target.
Since stochastic optimization is too computationally demanding for most applications, we also developed a good,
computationally feasible, myopic (greedy) heuristic using the optimal myopic strategy as a model. We applied the
optimal and heuristic control strategies in open-loop, open-loop feedback, and approximate closed-loop configuration
algorithms. We characterized the resulting tracker performance using Monte Carlo simulation; myopic control rules
(both stochastic optimization and the heuristic) gave better tracker performance than multi-step open-loop or open-
loop feedback controls. The best performance was obtained using myopic optimization or an approximate multi-step
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Figure 4: Plots of the expected squared position error for i a t using (a) a symmetric density for the predicted
position, and (b) an asymmetric density.

closed-loop control.
We considered a target moving in one dimension whose movement was modeled using a discrete-time linear

system. The foveal sensor provides observations of the target position Xk corrupted by noise. As shown in Figure 3,
the foveal sensor has a high gain region surrounded by low gain regions. The sensor has two adjustable parameters:
dk sets the location of the foveal region, while Ck sets the gain at the center of the foveal region. The observation of

the target is related to its position as
Zk = arctan (ck[Xk - dk]) + Vk,

where v; is white Gaussian noise with variance R.
We investigated configuration of the sensor from a given time k to a time M steps in the future to minimize the

expected squared position error at time k + M. Configuring the sensor involves choosing values for the sequence
of foveal centers and foveal gains. To provide a clear understanding of the optimization problem, we computed the
expected squared position error numerically for M = 1 using two different densities for the predicted target position.
Figure 4(a) shows this error when the density is Gaussian with mean zero and variance 0.1. The expected squared error
function is almost flat for a wide range of Ck+1 values, indicating that a wide range of values will give near optimal
results and that gradient descent optimization will converge slowly. Figure 4(b) shows the objective function when the
density is an asymmetric two-component Gaussian mixture with mean zero and variance 0.1. Note that the asymmetry
shifts the optimizing value of dA.+1 to approximately -0.1.

To compute optimizing values for the foveal sensor parameters, we used a stochastic gradient descent approach as
follows. In the tracker implementation, the density of the predicted target position is represented using particles and
weights computed by the particle filter; no closed form representation of the density is available. Using these particles
and weights to generate Monte Carlo samples of future states and observations, we can compute expected squared
error values for various settings of the sensor configuration variables. Since this computation is based on Monte Carlo
samples, our computed squared error values are random. We have investigated simultaneous perturbation stochastic
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approximation (SPSA), an iterative descent algorithm in which the gradient of the objective function is approximated
by Monte Carlo samples, to find optimal values for the foveal center and foveal gain for myopic and non-myopic
configuration.

Our SPSA results show that the myopic (M = 1) optimal value of c is a function of the observation noise variance
R and the predicted position estimate error variance P11 . Using the SPSA computed optimal values of c as a model,
we have developed a near-optimal heuristic function to compute c. Figure 5 compares the optimal values for c with

the heuristic values.
Using Monte Carlo simulations, we evaluated the average squared error performance of SPSA in open-loop and

open-loop feedback configurations. We also evaluated the performance of the heuristic and heuristic combined with
SPSA in an approximate closed-loop configuration. Figure 6 shows the average squared error as a function of time
for these different configuration approaches. The approximate closed-loop feedback approach and the myopic SPSA

approach have the best performance. The multi-step (M = 2) open-loop and open-loop feedback approaches perform
least well. The heuristic requires several orders of magnitude less computation than the SPSA methods.

4.2 Joint Tracking and Detection of Targets

In many scenarios, targets may be difficult to detect with a single use of a sensor due to target stealth, clutter, or other
factors. The use of a tracker that incorporates a target dynamics model and multiple uses of the sensor may allow better
target detection. Such as scheme, in which the estimator jointly tracks and make decisions about target presence or
absence, is denoted track before detect. We have investigated joint tracking and detection in the context of the foveal
sensor.

In previous work, a Bayesian approach to track before detect filtering for a single target was implemented using a
discretization of the target state space. More recent work has has implemented this Bayesian approach using a particle
filter.

Implementation of the track before detect filter for the foveal sensor required extension of existing work in two
areas.

* To perform track before detect, we require a sensor that provides information without the necessity of target
detection. The sensor model that we adopted is a foveal sensor that provides a one-dimensional image in which
pixel values are related to the probability of the target being present at a given location. If the target is positioned
such that its image falls in a given pixel, the pixel value's mean is related to the target intensity. The variance of
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all pixel values is determined by the variance of the imager noise. Such a model could result from an IR sensor,
for example.

To perform simultaneous tracking and detection, we must extend the state estimated by the particle filter to
include both the number of targets (which may be zero) and the kinematic information for each target.

The use of the particle filter to implement the Bayesian track before detect scheme, while simple in concept,
required significant work to achieve computationally efficient implementations. In particular, we devoted a significant
amount of effort to the development of particle filters for pixelated sensors and for tracking an unknown and changing
number of targets.

We adapted the near optimal sensor configuration heuristic to the pixelated foveal sensor model, and found that it

did a good job of tracking targets that had a reasonably high signal-to-noise ratio. We were less successful simulta-
neously tracking and detecting dim targets; we believe that further development of the particle filter implementation
may improve the performance.

4.3 Attentive Tracking of Closely Spaced Targets

We investigated heuristic strategies to configure a foveal sensor to track multiple targets moving in one dimension.

These strategies were obtained by extending the heuristic strategy to multiple targets using three approaches: simulta-
neously observe all targets (SO), center the foveal region on each target in turn (TO), and center the foveal region on
the target with the worst position estimate (WO). Our simulation results showed the best performance is obtained by
the WO rule.

The dynamics model for each target and the model for the foveal sensor were the same as the models used for Task
2.1. The tracker was implemented using a joint multi-target probability density particle filter with joint probabilistic
data association (JPDA). As part of this work, we developed novel independent partition (IP) proposal schemes to
address the problem of association of observations with targets. In particular, we investigated two different methods:
generalized nearest neighbor (IP-GNN) and joint probabilistic data association (IP-JPDA). IP-JPDA provided better
performance in the presence of clutter.

9



Table 1: Percentage of runs that converged with no clutter

Proposal method SO TO WO
IP-JPDA 90.5% 99.5% 99.7%

KP 88.5% 97.1% 96.4%
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Figure 7: Average squared position error (ASE) for three targets (tl, t2, and t3) for the SO, TO and WO heuristics and
no clutter.

We evaluated the foveal sensor performance in two scenarios:

"* No clutter: the sensor detects all targets with probability one and there are no false alarms,

"* Clutter: the sensor detects each target with probability 0.9 and false alarms are Poisson distributed with an
expected number of false alarms of 0.5.

We compared the performance of the three configuration approaches using Monte Carlo simulation; all evaluations
used 1000 simulation runs. We also compared the performance given by the IP-JPDA proposal distribution with
the performance given by the kinematic prior (KP) proposal.' We characterized the performance by examining the

'The kinematic prior is the simplest proposal distribution to implement, and is often the first proposal distribution considered in a particle filter
implementation.

Table 2: Percentage of runs that converged in clutter

Proposal method SO TO WO

IP-JPDA 81.1% 90.7% 92.5%
KP 80.6% 75.8% 83.1%
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Figure 8: Average squared error (ASE) for the SO, TO and WO heuristics in clutter.

Table 3: Percentage of runs that converged using IP-JPDA and IP-GNN

Proposal method no clutter clutter
IP-JPDA 100% 98.9%
IP-GNN 100% 84.1%

percentage of Monte Carlo runs in which the tracker converged and, for converged runs, the average squared error in
the estimated position of each target. We defined a run to have converged if the position errors for all targets remained
below a given threshold during the last ten time steps of each run.

We compared the performance of the SO, TO, and WO approaches for both IP-JPDA and kinematic prior (KP)
proposals for no clutter and clutter. Table I and Figure 7 show the percent of runs that converged and the average

squared error (ASE) in the target position estimate as a function of time for the SO, TO and WO heuristics tracking
three targets in no clutter. Table 2 and Figure 8 show the corresponding performance with clutter. The performance of
IP-JPDA is always better than that of KP, and WO and TO with IP-JPDA proposal perform better than SO. Also, WO
appears to be generally slightly better than TO in the presence of clutter.

We also compared IP-JPDA and IP-GNN. Table 3 and Figure 9 show that IP-JPDA has the same performance

tracking 2 targets as IP-GNN in no clutter, while IP-JPDA has better performance than IP-GNN in clutter. This is
because IP-JPDA is more robust with respect to false measurement-to-target assignments.

4.4 Configuration of Pan-ilt-zoom Cameras

We adapted the concepts develop for the foveal sensor configuration algorithms to the problem of configuring pan-
tilt-zoom cameras to track a target maneuvering in three dimensions. In particular, we developed an adaptive zoom
algorithm that minimizes localization errors by adaptively changing the focal length of the camera. Increasing the
focal length (zooming in on a target) enhances the localization accuracy. However, increasing the focal length to much
can result in a target loss when the target image falls off the image plane. Decreasing the focal length reduces the
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Figure 9: Comparison between IP-JPDA and IP-GNN proposal schemes for clutter and no clutter.

likelihood that the target will be lost but provides less accurate observations of target location.
The configuration algorithm uses a particle filter with a constant-velocity target dynamics model and a simple

three-dimensional camera geometry model. The adaptive zoom algorithm adjusts the camera focal length until a given
percentage of projected particles fall onto the image plane; the focal length is also adjusted by a confidence factor that
influences and is influenced by whether the zooming algorithm is aggressive or conservative. The algorithm, which
we called the Adaptive Zoom Technique for Enhanced Capture (AZTEC), uses two cameras to track a point target.

The algorithm was subsequently improved by using Monte Carlo simulation to establish the relationship between
zoom and target tracking accuracy for different scenarios. This relationship was used to create a heuristic configuration
algorithm with significantly improved tracking performance.

5 Task 3: Target Tracking Using Attentive Sensor Networks

This task was not addressed directly under AFOSR support. However, with funding from the DARPA ISP program,
several different sensor configuration strategies for target tracking have been developed.

The first to be developed was for tracking a target as it moves through an array of very simple sensors; the sensors

are modeled as energy detectors whose probability of detection varies inversely with the distance between the sensor
and the target. The target is tracked using a particle filter. The sensors are configured to be either on or off using a

simple heuristic: turn on the sensors that fall within a circle centered at the estimated target location and whose radius
is determined by the uncertainty in the target position estimate. In addition to the simple heuristic, sensor configuration
strategies based on the branch and bound techniques and integer programming have been developed.

In addition to sensor networks, the DARPA ISP program has funded work in which a moving target is tracked by
a mobile sensor; at each time, the sensor can make one of a finite number of moves. We have investigated myopic
(greedy) and non-myopic optimization approaches for sensor positioning using open-loop and open-loop feedback
control strategies. Our results show that non-myopic optimization leads to better tracking performance-
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